Molecular Mobility in Hyperbranched Polymers and Their Interaction with an Epoxy Matrix

نویسندگان

  • Frida Román
  • Pere Colomer
  • Yolanda Calventus
  • John M. Hutchinson
چکیده

The molecular mobility related to the glass transition and secondary relaxations in a hyperbranched polyethyleneimine, HBPEI, and its relaxation behaviour when incorporated into an epoxy resin matrix are investigated by dielectric relaxation spectroscopy (DRS) and dynamic mechanical analysis (DMA). Three systems are analysed: HBPEI, epoxy and an epoxy/HBPEI mixture, denoted ELP. The DRS behaviour is monitored in the ELP system in three stages: prior to curing, during curing, and in the fully cured system. In the stage prior to curing, DRS measurements show three dipolar relaxations: γ, β and α, for all systems (HBPEI, epoxy and ELP). The α-relaxation for the ELP system deviates significantly from that for HBPEI, but superposes on that for the epoxy resin. The fully cured thermoset displays both β- and α-relaxations. In DMA measurements, both α- and β-relaxations are observed in all systems and in both the uncured and fully cured systems, similar to the behaviour identified by DRS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Hyperbranched Poly(ethyleneimine) Polymers of Different Molecular Weight and Their Interaction with Epoxy Resin

Two different commercial hyperbranched poly(ethyleneimine)s (HBPEI), with molecular weights (MW) of 800 and 25,000 g/mol, and denoted as PEI800 and PEI25000, respectively, as well as the mixtures with a Diglycidyl Ether of Bisphenol-A (DGEBA) epoxy resin, have been studied using thermal analysis techniques (DSC, TGA), dielectric relaxation spectroscopy (DRS), and dynamic mechanical analysis (DM...

متن کامل

Impact Resistance Enhancement by Adding Core-Shell Particle to Epoxy Resin Modified with Hyperbranched Polymer

A core-shell particle was fabricated by grafting amino-terminated hyperbranched polymer to the surface of silica nanoparticles. The influences of core-shell particle contents on the tensile and impact strength of the epoxy thermosets modified with amino-terminated hyperbranched polymer were discussed in detail. For comparison, core-shell particle was added into the epoxy/polyamide system for to...

متن کامل

Investigation of Capsulated Epoxy and DCPD in Epoxy Based Self-healing Composites - DFT Calculation and Experimental Analysis

Epoxy and dicyclopentadien (DCPD) are two common healing agents, which are introduced into epoxy matrix through encapsulation in order to prepare self-healing composites. In a comparative study, the compatibility of healing agents and epoxy matrix is investigated through experimental tests and DFT calculations. The interaction energy is considered to be the determinative parameter in DFT calcul...

متن کامل

Heterogeneity in epoxy nanocomposites initiates crazing: significant improvements in fatigue resistance and toughening.

Crazing is a failure mode of bulk polymers and occurs under predominant uniaxial tensile load when the bulk eventually forms denser ligaments (or fibrils) while preserving its continuity. The bridging of cracks by such fibrils is an importantmechanism for energy dissipation and toughening in thermoplastic polymers. However, craze phenomena are not observed in thermosetting polymers such as epox...

متن کامل

Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016